Für statistische Zwecke und um bestmögliche Funktionalität zu bieten, speichert diese Website Cookies auf Ihrem Gerät. Das Speichern von Cookies kann in den Browser-Einstellungen deaktiviert werden. Wenn Sie die Website weiter nutzen, stimmen Sie der Verwendung von Cookies zu.

Cookie akzeptieren
Begehr, Heinrich G. W. / Joji Kajiwara et al (Hrsg.). Proceedings of the Second ISAAC Congress - Volume 2: This project has been executed with Grant No. 11¿56 from the Commemorative Association for the Japan World Exposition (1970). Springer US, 2011.
eng

Proceedings of the Second ISAAC Congress

Volume 2: This project has been executed with Grant No. 11¿56 from the Commemorative Association for the Japan World Exposition (1970)
  • Springer US
  • 2011
  • Taschenbuch
  • 840 Seiten
  • ISBN 9781461379713
Herausgeber: Heinrich G. W. Begehr / Joji Kajiwara / R. P. Gilbert

Let 8 be a Riemann surface of analytically finite type (9, n) with 29 ­ 2+n> O. Take two pointsP1, P2 E 8, and set 8 ,1>2= 8 \ {P1' P2}. Let PI Homeo+(8;P1,P2) be the group of all orientation preserving homeomor­ phismsw: 8 -+ 8 fixingP1, P2 and isotopic to the identity on 8. Denote byHomeot(8;Pb P2) the set of all elements ofHomeo+(8;P1, P2) iso­ topic to the identity on 8 ,P2' ThenHomeot(8;P1,P2) is a normal sub­ pl group ofHomeo+(8;P1,P2). We setIsot(8;P1,P2) =Homeo+(8;P1,P2)/ Homeot(8;p1, P2). The purpose of this note is to announce a result on the Nielsen­ Thurston-Bers type classification of an element [w] ofIsot+(8;P1,P2). We give a necessary and sufficient condition for thetypeto be hyperbolic. The condition is described in terms of properties of the pure braid [b ] w induced by [w]. Proofs will appear elsewhere. The problem considered in this note and the form

Mehr Weniger
ofthe solution are suggested by Kra's beautiful theorem in [6], where he treats self-maps of Riemann surfaces with one specified point. 2 TheclassificationduetoBers Let us recall the classification of elements of the mapping class group due to Bers (see Bers [1]). LetT(R) be the Teichmiiller space of a Riemann surfaceR, andMod(R) be the Teichmtiller modular group of R. Note that an orientation preserving homeomorphism w: R -+ R induces canonically an element (w) EMod(R). Denote by&.r(R)(·,.) the Teichmiiller distance onT(R). For an elementXEMod(R), we define a(x)= inf &.r(R)(r,x(r)).

in Kürze

Andere Ausgaben
Gebunden

in Kürze

Taschenbuch

in Kürze

Gebunden

in Kürze